This semester I will be attending the doctoral course MA8702 – Advanced Modern Statistical Methods with the excellent Prof. Håvard Rue. It will be course about statistical models defined over sparse structures (chains and graphs). We will start with Hidden Markov Chains and after go to Gaussian Markov Random Fields, Latent Gaussian Models and approximate inference with Integrated Nested Laplace Approximation (INLA). All this models are interesting for my research objective of developing sound latent models for recommender systems and I am really happy of taking this course with this great teacher and researcher. So, I will try to cover some of the material of the course, starting from what we saw in the first lecture: exact recurrence for Hidden Markov Chains and dynamic programming. In other words, general equations for predictions, filtering, smoothing, sampling, mode and marginal likelihood calculation of state-space model with latent variables. We will start by introduction the general model and specifying how to obtain the prediction and filtering equation.
- Markovian property:
, with
are observed and
are latent, so
is always known.
- If we know
than no other variable will add any information to the conditional distribution of
.
Continue reading “Hidden Markov Models (part I): recurrence equations for filtering and prediction”